X-641-70-178

NASA TM X-63907

A NEW FORMULATION OF **CANONICAL PERTURBATION THEORY**

DAVID P. STERN

MAY 1970

GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND

A New Formulation of Canonical Perturbation Theory

David P. Stern
Laboratory for Space Physics
Goddard Space Flight Center
Greenbelt, Maryland 20771

Abstract

By means of direct canonical transformations, the Poincare-Von Zeipel perturbation method may be modified into a more useful form. Two particular variants of this approach are examined and explicit formulas are given for carrying them out to at least the 4-th order.

1. INTRODUCTION

In this work, a modification of the Hamilton-Jacobi equation is developed, utilizing the direct formulation of canonical transformations. The resulting perturbation scheme is easy to apply and may be related either to the standard Poincaré-Von Zeipel method or to Hori's expansion, depending on the choice of certain expressions entering it.

The solution of a mechanical problem by the Hamilton-Jacobi equation seeks a canonical transformation to new variables, in which the complexity of the problem is reduced. In particular, let us consider a perturbed periodic motion, with p the action variable of the unperturbed motion and with a time-independent Hamiltonian

$$H = p_1 + \sum_{k=1}^{\infty} \epsilon^k E^{(k)}(\underline{p}, \underline{q}) \qquad (1)$$

Then by the Poincaré-Von Zeipel method (Poincare, 1893; Von Zeipel, 1916; Corben and Stehle, 1960) one seeks a near-identity transformation to new variables (P, Q), given by the generating function

$$\sigma = \sum_{\mathbf{p_i}} \mathbf{q_i} + \sum_{\mathbf{k=1}} \varepsilon^{\mathbf{k}} \sigma^{(\mathbf{k})}(\underline{\mathbf{p}}, \underline{\mathbf{q}})$$
 (2)

via

In this method, one uses the fact that the new Hamiltonian equals the old one, substituting (3) to obtain

$$H(\Im \Gamma/\Im \underline{q}, \underline{q}) = H^{*}(\underline{P}, \Im \Gamma/\Im \underline{P})$$
 (4)

When this is expanded in orders of \mathcal{E} , a recursive scheme is obtained and both H^* and \mathbb{C} may be derived order by order, subject to the condition that the transformed angle variable Q_1 is absent from the new Hamiltonian H^* . When this is accomplished, not only has Q_1 been removed from the problem, but its conjugate P_1 has become a constant of the motion, so that the motion represented by H^* has two fewer variables to contend with.

Now a near-identity transformation may be represented in other ways than by equations (2)-(3); these ways may offer more convenience, since U in (2) depends on both old and new variables and therefore the relations (3) require further untangling to be useful. In particular, we may consider a <u>direct</u> canonical transformation

$$\underline{z} = \underline{y} + \sum_{k=1}^{\infty} \xi^{k} \underline{\zeta}^{(k)}(\underline{y})$$
 (5)

where we will use the notation

$$\begin{array}{ccc}
\underline{\mathbf{z}} & \equiv & (\underline{\mathbf{p}}, \underline{\mathbf{q}}) \\
\underline{\mathbf{z}} & \equiv & (\underline{\mathbf{p}}, \underline{\mathbf{q}})
\end{array}$$

with

$$y_1 = p_1$$

$$y_n = q_1$$
(7)

Also, it will be useful to denote by a tilde the vector formed by omitting the component y_n or the one corresponding to it, e.g.

$$\underline{z} \equiv (\underline{\tilde{s}}, \underline{z}_n)$$
 (8)

Then, if one substitutes (5) into the basic relation

$$H(y) = H^*(\underline{\tilde{z}}) \tag{9}$$

and expands order by order, the appropriate transformation (5) may be derived. Hori (1966) used this approach, with (5) given through Lie's formulation of canonical transformations (Lie, 1888). Here a somewhat different approach (Stern, 1970) will be used, which can be made equivalent either to Hori's or to the Poincare-Von Zeipel method, depending on one's choice of the expression $\underline{f}^{(k)}$, defined later.

2. NOTATION

If the position vector \mathbf{y} in phase space is defined as in (6), let its conjugate $\mathbf{\tilde{y}}$ be defined

$$\overline{\overline{y}} = (\underline{q}, -\underline{p}) \tag{10}$$

from which, by (7)

$$\vec{y}_1 = y_n$$

$$\vec{y}_n = -y_1$$
(11)

Also, if ∇ operates in y-space, we can define there a conjugate gradient operator $\tilde{\nabla}$, the i-th component of which is $\partial/\partial \tilde{y}_i$.

To express functions of \underline{z} in terms of \underline{y} , we shall use Taylor expansion operators $T^{(k)}$ (Musen, 1965), with operation denoted (for clarity) by an asterisk:

$$G(\underline{z}) = G(y + \sum_{i} \varepsilon^{k} \underline{\zeta}^{(k)})$$

$$= \exp(\sum_{k=1} \varepsilon^{k} \underline{\zeta}^{(k)} \cdot \nabla) * G(\underline{y})$$

$$= \sum_{k=0} \varepsilon^{k} T^{(k)} * G(\underline{y})$$
(12)

The $T^{(k)}$ may be obtained by expanding the exponential and regrouping terms according to their order in E; the first few of them are

$$\mathbf{T}^{(0)} = \mathbf{1}$$

$$\mathbf{T}^{(1)} = \underline{\xi}^{(1)} \cdot \nabla$$

$$\mathbf{T}^{(2)} = \underline{\xi}^{(2)} \cdot \nabla + \frac{1}{2} \underline{\xi}^{(1)} \underline{\xi}^{(1)} \cdot \nabla \nabla$$

$$\mathbf{T}^{(3)} = \underline{\xi}^{(3)} \cdot \nabla + \underline{\xi}^{(1)} \underline{\xi}^{(2)} \cdot \nabla \nabla + (1/6) \underline{\xi}^{(1)} \underline{\xi}^{(1)} \cdot \nabla \nabla \nabla$$

and so forth. In general one can write

$$\mathbf{T}^{(\mathbf{k})} = \underline{\boldsymbol{\zeta}}^{(\mathbf{k})} \cdot \nabla + \mathbf{N}^{(\mathbf{k})}$$
 (14)

where $N^{(k)}$ is an operator involving ∇ at least twice.

3. THE TRANSFORMATION

The relation (5) holds for any near-identity transformation. If $_{\Lambda}$ is to be a canonical transformation, $\underline{S}^{(k)}$ must satisfy additional requirements, and it may be shown (Stern, 1970) that these always have the general form

$$\zeta^{(k)} = \underline{\underline{\mathbf{f}}}^{(k)}(\zeta) + \overline{\nabla}\chi^{(k)}$$
 (15)

where $\underline{f}^{(k)}(\underline{\xi})$ are expressions involving lower orders and $\chi^{(k)}$ is the k-th order of a generalization of the generating function. Many alternative choices of $\underline{f}^{(k)}$ are possible (one can often construct lower order expressions that have the form of a conjugate gradient and add them to $\underline{f}^{(k)}$) but we shall be concerned with two in particular. One may choose

$$f_{\mathbf{i}}^{(k)} = -\sum_{m=1}^{k-1} s^{(m)} * (\Im \chi^{(k-m)} / \Im \overline{y}_{\mathbf{i}})$$
 (16)

where $S^{(m)}$ are operators resembling the $T^{(m)}$ of (13) but with $\xi^{(j)}$ everywhere replaced by

$$\underline{\pi}^{(j)} = (\xi_1^{(j)}, \dots, \xi_{(n/2)}^{(j)}, 0, \dots 0)$$
(17)

that is, with vectors in which the momentum-like parts are retained and the coordinate-like parts are replaced by zeros. It may then be shown (see Stern, 1970, where this choice of $\underline{\mathbf{f}}^{(k)}$ is denoted by $\underline{\mathbf{f}}^{(k)}$) that in this case

$$\chi^{(k)} = \sigma^{(k)} \tag{18}$$

with $\sigma^{(k)}$ the k-th order "conventional" generating function of equation (2) which describes the same transformation. Since $S^{(m)}$ contains orders of \S and of χ lower than the k-th, equation (16) must be derived recursively order by order.

Alternatively, $f_i^{(k)}$ may be derived without breaking up $\xi^{(k)}$ into momentum-like and coordinate-like parts. The general method for doing this (Stern, 1970) is too lengthy to be described here, and we shall merely give the lowest orders of the result:

$$\underline{\mathbf{f}}^{(1)} = 0$$

$$\underline{\mathbf{f}}^{(2)} = \frac{1}{2} \underline{\boldsymbol{\xi}}^{(1)} \cdot \nabla \underline{\boldsymbol{\xi}}^{(1)}$$

$$\underline{\mathbf{f}}^{(3)} = \underline{\boldsymbol{\xi}}^{(2)} \cdot \nabla \underline{\boldsymbol{\xi}}^{(1)}$$

$$\underline{\mathbf{f}}^{(4)} = \underline{\boldsymbol{\xi}}^{(3)} \cdot \nabla \underline{\boldsymbol{\xi}}^{(1)} + \frac{1}{2} \underline{\boldsymbol{\xi}}^{(2)} \cdot \nabla \underline{\boldsymbol{\xi}}^{(2)} + + \frac{1}{2} \underline{\boldsymbol{\xi}}^{(2)} \cdot \nabla \underline{\boldsymbol{\xi}}^{(2)} - \underline{\boldsymbol{\xi}}^{(2)} \cdot \nabla \underline{\boldsymbol{\xi}}^{(1)}$$

$$- \frac{1}{2} \left[(\underline{\boldsymbol{\xi}}^{(1)} \cdot \nabla \underline{\boldsymbol{\xi}}^{(1)}) \cdot \nabla \underline{\boldsymbol{\xi}}^{(1)} \right] \cdot \nabla \underline{\boldsymbol{\xi}}^{(1)}$$

With this choice it may be shown (Stern, 1970) that

$$\chi^{(k)} = -s^{(k)} \tag{20}$$

where S(k) is the k-th order generating function defined by Hori (1966).

4. THE PERTURBATION METHOD

Expanding (9), and using (1) and (12), gives

$$\mathbf{y}_{1} + \sum_{\mathbf{k}=1} \varepsilon^{\mathbf{k}} \mathbf{H}^{(\mathbf{k})}(\underline{\mathbf{y}}) = \sum_{\mathbf{k}=0} \varepsilon^{\mathbf{k}} \mathbf{H}^{*(\mathbf{k})}(\underline{\widetilde{\mathbf{y}}})$$

$$= \sum_{\mathbf{k}=0} \varepsilon^{\mathbf{k}} \mathbf{H}^{*(\mathbf{k})}(\underline{\widetilde{\mathbf{y}}} + \sum_{\mathbf{k}} \varepsilon^{\mathbf{k}} \underline{\widetilde{\mathbf{y}}}^{(\mathbf{k})})$$

$$= \sum_{\mathbf{k}=0} \varepsilon^{\mathbf{k}} \sum_{\mathbf{m}=0}^{\mathbf{k}} \mathbf{T}^{(\mathbf{m})} \mathbf{H}^{*(\mathbf{k}-\mathbf{m})}(\underline{\widetilde{\mathbf{y}}}) \qquad (21)$$

This may be equated order by order, the zeroth order being simply

$$H^{*(O)}(\tilde{y}) = H^{(O)}(\underline{y}) = y_1$$
 (22)

In the $O(\epsilon^k)$ relation we separate the terms with m equal to 0 and k from the rest and use (14) and (22). This gives

$$H^{(k)}(\underline{y}) = H^{*(k)}(\underline{\widetilde{y}}) + \underline{\Sigma}^{(k)} \cdot \nabla y_1 + N^{(k)} * y_1 + \dots + \sum_{m=1}^{k-1} T^{(m)} * H^{*(k-m)}(\underline{\widetilde{y}})$$

$$(23)$$

In the last equation, $N^{(k)}$ may be dropped, since it contains ∇ twice or more and its action on y_1 thus yields zero. Also, by (11)

$$\boldsymbol{\xi^{(k)}} \cdot \nabla \boldsymbol{y_1} = \boldsymbol{\xi_1^{(k)}} = \boldsymbol{f_1^{(k)}} + \boldsymbol{\chi^{(k)}} / \boldsymbol{y_n}$$
 (24)

The final result, which is the basic relation of our perturbation scheme, may thus be written

$$\Im \chi^{(k)} / \Im y_n + H^{*(k)}(\tilde{y}) = \bigwedge^{(k)} (\tilde{y})$$
 (25)

where

If the variable y_n enters only as an angle with basic period unity, $(x)/(y_n)$ is clearly periodic, since any nonperiodic part of (x) is removed by the differentiation. If one defines an averaging operator

$$\langle \bigwedge^{(k)} \rangle = \int_{0}^{1} \bigwedge^{(k)} dy_n$$
 (27)

then clearly

$$H^{*(k)}(\tilde{y}) = \langle \wedge^{(k)} \rangle$$
 (28)

$$\chi^{(k)} = \int_{0}^{y_n} (\wedge^{(k)} - \langle \wedge^{(k)} \rangle) dy_n' + M^{(k)}(\tilde{y})$$
 (29)

where $M^{(k)}(\tilde{y})$ is an arbitrary function, representing the fact that when y_1 and y_n are eliminated, the other variables may also undergo an arbitrary near-identity transformation among themselves. If no other considerations exist, it may be set equal to zero.

Suppose the calculation has been carried out up to and including order (k-1). We now form $\bigwedge^{(k)}$ by (26), derive $H^{*(k)}$ and $\chi^{(k)}$ by (28) and (29), and then obtain $\zeta^{(k)}$ from (15), using the appropriate choice of $\underline{f}^{(k)}$. The derivation is now complete to the k-th order.

ACKNOWLEDGEMENT

The author wishes to thank Dr. Peter Musen for a stimulating discussion of this work.

REFERENCES

- Corben, H.C., and Stehle, P.: 1960, Classical Mechanics, 2nd Ed., John Wiley and Sons; section 75.
- Hori, G.-I.: 1966, Theory of General Perturbations with Unspecified Canonical Variables, Publ. Astron. Soc. Japan 18, 287-296
- Lie, S.: 1888, Theorie der Transformationgruppen, Teubner, Leipzig
- Musen, P.: 1965, On the High Order Effects in the Methods of Krylov-Bogoliubov and Poincaré, J. Astronautical Sciences 12, 129-134
- Poincaré, H.,: 1895, Les Methodes Nouvelles de la Mecanique Celeste, vol. II,

 Gauthier-Villars, Paris; reprinted by Dover Bublications, New York, 1957;

 NASA translation TT F-451, 1967.
- Stern, D.: 1970, Direct Canonical Transformations, to appear in J. Math. Physics Von Zeipel, H.: 1916, Ark. Astr. Mat. Fys. 11, no. 1